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Two-layer hydraulics is developed for problems in which the moving layers can have 
stagnant layers above and below, the two internal wave modes can have comparable 
speeds and the total depth of the moving layers may vary. The general development 
allows both Boussinesq and non-Boussinesq problems to be studied. Solutions are 
presented in the Froude-number plane and the effect of different layer densities on 
the form of the solution space is shown. The theory is applied to two-layer plunging 
flows and a variety of controlled solutions are found. Solutions for the 2t-layer theory 
and the plunging flow theory are demonstrated experimentally. Shear instability is 
often observed in the divergent section of the channel. 

1. Introduction 
Two-layer hydraulics problems occur in a variety of practical and geophysical 

situations. A thorough understanding of the two-layer system will also give insight 
into the hydraulics of continuously stratified fluid. Two-layer hydraulics for flows 
through a contraction or over a sill were explored by Armi (1986), and this analysis 
was applied to various two-layer exchange flows by Armi & Farmer (1986) and 
Farmer & Armi (1986). In all these papers, the two layers were assumed to be 
bounded below by a rigid surface and above by a rigid lid or a free surface and so only 
the slower internal wave mode plays a role in the flows. Armi (1986) also reviewed 
earlier work on internal hydraulics. 

Here, a general two-layer hydraulics theory is developed for flows through a 
contraction. The flow geometry is shown in figure 1 : the moving layers are bounded 
above and below by stagnant layers, the total depth of the two moving layers is 
allowed to vary, so there are two internal wave modes that play a role in the problem. 
The Boussinesq approximation is not used, so any density step can be treated. Wood 
(1968) found a special self-similar solution to this problem but full solutions have not 
been presented before. The general formulation of the problem presented here is also 
applied to the flow of two layers beneath a stagnant layer, a problem discussed by 
Wood (1970) and Lai & Wood (1975). 

Since slowly varying hydraulically controlled flows are being sought, regularity 
conditions and the associated conditions for critical flow are examined. The approach 
used is similar to that of Armi (1986). The flows are parametrized in terms of the 
internal Froude numbers of each layer and solutions for flows with a fixed flow ratio 
(ratio of volume flux in the two moving layers) but variable reservoir layer depths 
are presented in the Froude-number plane. Since there are now two internal wave 
modes, the Froude-number plane has two critical lines. We explore the effect of 
changing the density of the stagnant layers on the solution curves and on the 
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Elevation 

FIGURE 1. Two layers flowing through a contraction. 

conditions for critical flow. The presentation in the Froude-number plane makes 
apparent the special nature of the self-similar solution. 

We also consider flows in which the upper layer of the stagnant layers does not 
extend throughout the channel. These plunging flows occur when two layers flow into 
a reservoir of less dense fluid, and the flow rate is such that the lighter downstream 
reservoir fluid cannot extend back to the upstream reservoir. The flow leaving the 
upstream reservoir is governed by two-layer dynamics but a t  the downstream 
reservoir and for some distance into the contraction there is an overlying layer of 
stagnant fluid, and in this region the flow is governed by 2i-layer dynamics. Single- 
layer flows of this type, termed ' box flows ', were discussed by Armi & Farmer (1986) 
but the presence of two moving layers complicates the problem. The theory 
developed here is used to find hydraulically controlled two-layer plunging flows. 
Various flow regimes are found that allow controlled flows to occur a t  higher flow 
rates than Wood's self-similar solution permits. 

The unidirectional flow through a contraction of two layers beneath a stagnation 
layer is also examined in a series of laboratory experiments. Flows with one and two 
controls and the extension a t  higher flow rates to plunging flows are demonstrated 
and compared with the theory. 

2. Governing equations 
The situation being considered is shown in figure 1. Two layers of fluid are moving 

through a contraction. They are bounded above and below by layers of stagnant 
fluid. The channel has vertical walls and the breadth is slowly varying. The bottom 
can be of any shape as long as it does not come into contact with the moving fluid. 
It is assumed that there is a steady, frictionless, one-dimensional hydrostatic flow. 
This flow is described by Bernoulli equations for the two moving layers and the lower 
stationary layer: 
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where ui, y i ,  pi  and 5 are respectively the velocity, thickness, density and upstream 
reservoir thickness of each layer. Subscript zero refers to the topmost layer and 
subscript three to the deepest layer. When ( 1  c)  is used to eliminate y3 from ( 1  a, b ) ,  
the following are obtained : 

where 

and 

One or both stagnant layers can be removed by setting ro, (no upper layer) or ri3 (no 
lower layer) equal to zero. Mass conservation is imposed by the requirement that the 
volume flow rate in each layer be constant : 

Qi = ui Yi b ,  (3) 

where b is the channel width and Qr is the layer volume flow rate, which is 
independent of streamwise location. 

2.1.  Critical Jlow and regularity of solutions 
The following analysis is similar to that of Armi (1986). It is useful to define the 
Froude number for each layer by 

s; = q( l - r~- l , r ) ( l - r i , r+ l ) .  (4b) 

This Froude number differs from those used in earlier works on two-layer hydraulics. 
It is motivated by a desire to use a Froude number that contains information about 
the layers both above and below the layer under consideration and leads to 
considerable simplification of the analysis and of the resulting equations. The more 
commonly used internal Froude number is defined by replacing g; in (4a) by g’ = 
9(1 -r12) : 

22-2 
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A matrix formulation analogous to that used by Armi (1986) is found by taking the 
streamwise (x) derivative of (2a ,  b )  and (3): 

CV, = Of, 

where 

and the subscript x denotes streamwise differentiation. These equations are solved 
for the ui, in terms of the Froude numbers and the independent topographic variable 
b :  

where G2 is a new composite Froude number, 

G2 = ~ ~ ( l - ~ 0 2 ) - 9 ~ ( l - ~ 1 3 ) - ~ ~ ~ ~ ( l - ~ l ~ )  (i-rO3).  (6) 

The flow is critical when G2 = 1, and solutions to (5a,  b )  are well behaved only if the 
numerators also vanish : 

( 7 4  

( 7 b )  

These regularity conditions are always satisfied a t  the narrowest section, where b, = 
0. When b, =k 0, (7a, b )  can be solved to find that 

When this condition holds, there is a control a t  some section other than the 
narrowest section. This result was first found by Wood (1968), and the control was 
called a virtual control. The special character of solutions with a virtual control can 
be seen by solving the Bernoulli equations (2a,  b )  for the moving layers for the 
Froude-number ratio of the flow, 
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Equating (8) and (9), we find that yl/yz = Y,/Y,. Thus the ratio of the depths of the 
two flowing layers at  the virtual control is the same as it was in the reservoir. It can 
be shown that there is a solution where this condition holds everywhere in the 
channel. This solution, found by Wood (1968), is self-similar - a t  every point in the 
channel, the ratio of the depths of the two layers is the same as their ratio at  the 
reservoir. The continuity condition (3) requires that the ratio of velocities in the two 
layers is also constant everywhere. By substituting this result back into (9), the flow 
ratio of the self-similar solution is found to be 

2.2.  The Froude-number plane 

As in Armi (1986), general solutions to the system under consideration will be 
presented in the Froude-number plane. The continuity equation (3) and the 
definition of the Froude number (4a )  are used to find 

Non-dimensional flow rates and channel width are defined as 

where b, a reference width and Y ,  is a reference depth, here taken to be &+ Yz, the 
total depth of the flowing layers at the reservoir. 

The preceding equations are then used to rewrite the sum of the depths of the 
moving layers y1 + yz, to find 

To use this result, it is also necessary to know the layer depths y1 and yz. The 
Bernoulli equations (2a ,  b )  can be used to find the layer depths as functions of the 
Froude numbers : 

where 
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The energy difference between the two moving layers is found by subtracting (2a) 
from (2b) and in non-dimensional form is 

This is a conserved quantity as long as there are no hydraulic jumps in the flow. For 
display in the Froude-number plane, this result can be expressed in terms of Froude 
numbers and the flow ratio Q, by using (1  1 ) .  A t  the reservoir, both S: and 9; are 
small so 

This analysis can be used to present solutions in two forms. The first, used here, 
is similar to that used by Armi (1986). The flow ratio Q, and layer densities are fixed 
and each solution curve in the Froude-number plane corresponds to different 
reservoir layer depths. Equations (17) and (18) are solved for K2 = Y,/Y,, the non- 
dimensional depth at  the reservoir of the lower layer, and solution curves, in the form 
of curves of constant Y2) are plotted. Equation (15) is used to find Qi/b', and using 
the relationship Q' = Q', + Qi = QL(l+ Q,), curves of constant Q'/b' are plotted. Along 
a solution curve, Q is constant and the value of Q / b '  indicates the position within 
the contraction. In the solutions presented by Armi (1986), the QL/b' curves are 
derived purely from the continuity equations. Here, since the total depth of the 
moving fluid varies, information from the energy equations, in the form of the layer 
depths at  particular values of 9; and 9:, enter into the value of Q'/b'. 

It is sometimes of practical importance to find solutions with different flow ratios 
issuing from a known reservoir. The reservoir conditions take the form of known 
layer densities and values of q. Equations (17) and (18) can be solved to find Q, in 
terms of the Froude numbers and reservoir conditions. For a particular set of 
reservoir conditions, curves of constant &, are solution curves, and overlying Q / b '  
curves again show position within the channel along a solution curve. 

3. Solutions for various layer densities 
For a given flow rate and layer thickness, the Froude numbers defined by (4a, b) 

change when the density of the neighbouring stagnant layer changes. However, the 
more common definition of the layer Froude number given by (4c) depends only on 
r12 and so is independent of the density of the stagnant layers. Solutions sets will be 
plotted using this more common Froude number since this allows systems with 
different stagnant layer densities to be easily compared. Various solution sets will be 
discussed and, except where noted, in all figures the density ratio between the two 
flowing layers (r12) will be 0.99. 

The set of solutions for a flow where all four layers are separated by equal density 
steps and = 0.99 is shown in figure 2. Lines of constant Y2 are solution curves, 
and the position in the channel along a particular solution curve is given by the 
intersecting Q'/b' lines. The form of the solution curves is similar to those discussed 
by Armi (1986) and the reader is referred to that work for a detailecl discussion of the 
presentation of solutions in the Froude-number plane. The role of the various 
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FIGURE 2. Solution curves (dark lines) and &'/a' curves (light lines) in the Froude-number plane 
for Q, = 1, rol = rI2 = rZ5 = 0.99. Each solution curve is labelled with its non-dimensional lower- 
layer reservoir height Y2. Critical flow is defined by the lines G2 = 1. The Qlb' curves are. dashed 
for values above 0.35, where the contour interval has been reduced to 0.01. 

solution curves in unidirectional flows and exchange flows has been discussed at  
length by Armi (1986) and by Armi & Farmer (1986). Armi also addresses the issue 
of internal hydraulic jumps, which must in general occur to connect a controlled flow 
that is supercritical in the divergent section of the channel to a subcritical 
downstream reservoir. We will concentrate here on the new features of the solution 
space that occur because we allow for variations in the total depth of moving fluid. 

There are two striking differences between the solution space shown in figure 2 and 
those shown by Armi: the curves of constant Q'/b' are closed and have a maximum 
value, and there are two critical lines where G2 = 1. The first critical line, at lower 
Froude numbers, controls the relative depths of the two moving layers. This line 
shows a locus of Froude numbers where the flow is critical with respect to the higher 
internal wave mode. At the second critical line, the flow is critical with respect to the 
lower internal mode, and the total depth and volume flux of the moving fluid are 
controlled. In the following discussion, a flow that is supercritical with respect to 
only the higher mode will be referred to as internally supercritical while a flow that 
is supercritical with respect to both modes will be referred to as fully supercritical. 
Armi (1986) assumes that the total depth of the two layers is constant, which filters 
out the lower mode and removes the control of the total volume flux associated with 
the second critical line. 
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F: 
FIQTJRE 3. As figure 2 but for r,, = T , ~  = rS3 = 0.8. 

The solution space in figure 2 is also slightly asymmetric about the line F; = Fi,  
an effect due to not using the Boussinesq approximation. This effect is small since the 
density ratios rt,t+l are all close to 1. It is illustrated more dramatically in figure 3, 
which shows the solution space for the case rt,t+l = 0.8. There is a marked asymmetry 
in the solution space due to non-Boussinesq effects, but the overall structure of the 
solution space is unchanged. The following discussion of the features of the solution 
space applies equally well to either figure. 

The self-similar solution curve is the straight line coming from the origin. It is the 
only solution curve that passes through both critical lines. The point at which it 
passes through the first (low Froude number) critical line is the virtual control. It 
passes through the second critical line a t  the narrowest section and so the value of 
Q / b ’  is a maximum there. It is the only solution that originates a t  a stagnant 
reservoir, where both F; and Fi are zero, and passes through the second (high Froude 
number) critical curve. 

Another important solution curve is the one that crosses the self-similar solution, 
the maximal exchange solution found by Wood (1970) and discussed at  length by 
Armi & Farmer (1986). It connects two reservoirs, one where layer 1 is moving at 
high Froude numbers and the other where layer 2 is moving at high Froude numbers. 
The self-similar solution and the maximal exchange solution are the only two 
solution curves that intersect. Every critical point on a solution curve is at the 
narrowest section except the virtual control point, where the self-similar and 
maximal exchange solutions intersect. This can be seen by noticing that, except in 
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FT 
FIGURE 4. Solution curves (dark lines) and Q / b '  curves (light lines) in the Froude-number plane 
for two layers flowing beneath a stagnant layer (&, = 1 ,  rOl = rI2 = 0.99 and rZ3 = 0). Each solution 
curve is labelled with its non-dimensional lower-layer reservoir height 5. Critical flow is defined 
by the lines Gz = 1 .  

this one case, every solution curve reaches a maximum value of Q'/b', and hence a 
minimum value of b', when it passes through a critical line. 

Other flow geometries are obtained by removing one of the stagnant layers. Lai & 
Wood (1975) studied the flow of two layers beneath a stagnant layer, obtained here 
by setting rt3 = 0 and referred to as a 2i-layer system. Solution curves for this system 
with rOl = 0.99 and r12 = 0.99 are shown in figure 4. Solutions for the flow of two 
layers over a stagnant layer, obtained by setting rOj = 0, are essentially identical to 
those shown in figure 4 but with the layer indices exchanged; there is a slight 
asymmetry due to non-Boussinesq effects, but it is not significant at the density 
ratios used in figure 4. The basic features of these solution sets are the same as those 
discussed above. Figure 4 of Lai & Wood (1975) shows a set of solution curves 
analogous to those shown here in figure 4, although Lai & Wood do not use a Froude- 
number parameterization. They dismissed as unphysical the non-self-similar solution 
curves that lie above the lower-Froude-number critical line. In  two-layer systems, 
the role of these solution curves in the divergent section of the contraction was 
discussed by Armi (1986), and these solutions play an identical role in all the systems 
considered here. 

The behaviour of the 2f-layer system will be explored further by changing the 
density of the stagnant layer, which changes the value of rol. Figure 5 shows the 
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F: 
FIGURE 5. As figure 4 but for r,,, = 0.995, rI2 = 0.99 and r23 = 0. 

solution curves for rol = 0.995; the density step between the moving and stagnant 
layers is half the size of the density step between the two moving layers. The features 
seen in figure 4 are reproduced in this figure, but they occur at lower Froude 
numbers, and the angle of the critical flow line relative to the horizontal axis is 
greater. Thus the ratio P;/Fi  of the self-similar solution is smaller than in figure 4 and 
so the lower layer is accelerated more and the upper layer less than in the self-similar 
solution of figure 4. Apart from this skewing of the solution curves, the behaviour of 
the solution curves relative to the critical lines is identical to that described above. 
The critical lines are closer together and have both moved closer to the origin. The 
Q l b '  curves show that critical flows occur at lower flow rates than in figure 4. 

Figure 6 shows the solution curves for rol = 0.98 -the density step between the 
moving and stagnant layers is twice the size of the density step between the two 
moving layers. In order for the second critical line to be plotted, the size of the 
Froude-number space is larger than that used in figures 4 and 5. Again, the features 
described earlier are reproduced, but now they occur at higher Froude numbers. 
Similarly, the rotation of the self-similar flow line from its position in figure 4 is in 
the opposite direction to that in figure 5,  and the values of Q'lb' at  critical points are 
greater than in figure 4. The curvature of the critical lines is less than in figure 4 and 
if the upper density step is taken to its extreme value, so that rol = 0, the first critical 
line flattens out and the second critical line moves to very large Froude numbers. The 
first critical line becomes a straight line when the approximation rI2 = 1 is made and 
results of Armi (1986) are recovered. 
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4. Plunging flows 
The existence of two-layer plunging flows can be anticipated by considering the 

following situation. Two layers are flowing beneath a stagnant layer, the flow is self- 
similar and there are two controls: a virtual control within the contraction and a 
control at  the narrowest section. The flow rate and reservoir conditions are such that 
at the reservoir, and only there, the thickness of the stagnant layer is zero. A side 
view of this flow is illustrated in figure 7, labelled with lower-layer reservoir depth 
yZ  = 0.454. The dashed vertical line marks the position of the narrowest section. The 
total volume flux of each solution discussed in this section will be normalized relative 
to the volume flux of this flow, the maximal self-similar flow, and will be referred to 
as QREL. When the total flow rate is increased, the 2d-layer self-similar flow can no 
longer occur. A two-layer flow leaves the reservoir but at  some point in the 
contraction, the interface between the moving fluid and the stagnant top layer 
intersects the free surface, and downstream of that point, there is a 2i-layer flow. The 
maximal self-similar flow and two plunging flows are sketched in figure 7, where the 
plunge point is labelled S. The solution curves shown in this figure are for the case 
rol = 0.99, r12 = 0.99 and will be discussed later in this section. 

The box flows discussed by Armi & Farmer (1986) are single-layer flows that have 
a transition within the contraction from single-layer dynamics to 1;-layer dynamics. 
In  the flows considered here, there is a transition within the contraction from two- 
layer to 2i-layer dynamics. We will study four flow regimes, differentiated by the 
positions of the two controls relative to the positions of the transition point and the 
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FIGURE 7. Solution curves and schematic diagrams of regime (i) plunging flows: 
S, transition point; VC, virtual control ; C, control. 

narrowest section. Both the virtual control and the narrowest section can occur in 
either the two-layer or 2i-layer portion of the flow. 

Other flow geometries give rise to similar plunging flow problems. When two layers 
flowing above a stagnant layer and the depth of the stagnant layer becomes zero 
within the contraction, the problem is simply an inverted version of the flow outlined 
above. Two layers can also flow between two stagnant layers and the depth of one 
or both of the stagnant layers can become zero within the contraction. These flows 
are not fundamentally different from the case outlined above, and so only that 
situation will be considered in detail. 

A set of solutions will be presented for the case &, = 1. Solution curves will again 
be shown in a Froude-number plane, and in all cases the axes will be labelled with 
values of F:, the Froude number defined in (4c)  and used in earlier figures. The 2i- 
layer solutions are matched to the two-layer solutions by requiring that the layers 
in each region have the same depths at the transition point. The four regimes are as 
follows : 

(i) Three solution curves for this regime are shown in figure 7, along with 
schematic diagrams showing the side view of a channel for each of the solution 
curves. Various points of significance are marked: C shows the control at the 
narrowest section; VC shows the virtual control; S shows the transition from two- 
layer flow to 28-layer flow. When the transition occurs, the @-layer regime is 
subcritical and so the only possible 2i-layer solution is the self-similar solution. The 
flow in the two-layer portion matches this solution a t  the transition. The three 
schematic diagrams show that as the flow rate is increased, the transition point 
moves downstream until it  coincides with the virtual control. The virtual control is 
always at  the same position because the same self-similar 2i-layer flow occurs in all 
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FIGURE 8. Solution curves and schematic diagram of regime (ii) plunging flows: 
S, transition point; C, control. 

flows in this regime. The schematic diagrams are labelled with the lower-layer 
reservoir depth Y2 and with QREL. When Q R E L  = 1, Y2 = 0.454 and at the highest 
flow rate in this regime, QREL = 1.09 and Y2 = 0.492. 

(ii) When the transition occurs in this regime, the flow in the two-layer portion is 
subcritical and flow in the 2;-layer portion is internally supercritical. Like a virtual 
control, the transition point marks a transition between subcritical flow and 
internally supercritical flow. Unlike a virtual control, this point is also the transition 
from two-layer dynamics to 2B-layer dynamics. The situation is unusual in that there 
is a range of possible flows. 

The area in the Froude-number plane that delineates possible transition points is 
shown in figure 8, which also shows two solution curves and a schematic diagram of 
a flow in this regime. The area of possible transitions is defined by two curves. Since 
the two-layer flow must be subcritical, the area is bounded on the upper side, at 
higher Froude numbers, by the two-layer critical line. Since the 2i-layer portion of 
the flow must be internally supercritical and in the convergent part of the channel, 
the area is bounded on the lower side, by the solution curve for the 2i-layer system 
that is the maximal exchange solution, or the critical curve for the 2i-layer system 
where the maximal exchange flow is subcritical. Within this area, multiple solutions 
having the same total flow rate are possible. Each possible solution matches to a 
different two-layer solution and so comes from a different reservoir condition. 

Referring to the solution curves in figure 8, C shows the control at the narrowest 
section and S shows the transition from two-layer flow to 2;-layer flow. At the 
transition point S, the flow changes from subcritical to internally supercritical but 
since for a particular flow rate there is a range of possible reservoir conditions, the 
flow is controlled by the reservoir conditions rather than at the transition point. At 
the highest flow rate in this regime, the two-layer flow is just critical a t  the transition 
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FIGURE 9. Solution curves and schematic diagrams of regime (iii) plunging flows : S, transition 
point; VC, virtual control; C, control. 

and so the layer depths in the reservoir are equal ( Y2 = 0.5). This reservoir condition 
holds for both subsequent regimes. 

The transition between two-layer dynamics and 2i-layer dynamics is such that 
there is a range of reservoir conditions possible for a single flow rate. A similar 
behaviour was found by Bryant & Wood (1976) when studying two layers flowing in 
a channel that narrowed and had a down-sloping roof. As the total flow rate 
increased, there was a transition from a flow with a virtual control in a region 
governed by two-layer dynamics to a flow with a virtual control in a region governed 
by 24-layer dynamics. They found conditions for which there was an under- 
constrained ‘overlap ’ region analogous to the regime (ii) flows discussed here. There 
was also an over-determined, unsteady region that does not occur in the system 
studied here. 

The range of solutions spans a small range of reservoir conditions and flow rates 
so the anticipated multiple solutions would be difficult or impossible to observe in 
laboratory experiments. The fact that there is a small range of solutions rather than 
a completely controlled flow is unlikely to be of practical importance. 

(iii) Figure 9 shows solution curves and schematic diagrams for three flows in this 
regime. The two-layer flow passes through a virtual control and so the solution in the 
two-layer region is the self-similar solution already discussed by Armi (1986). The 
transition (S) is to a 2i-layer flow that is internally supercritical and becomes fully 
supercritical downstream of the narrowest section (C). Since we are discussing the 
case &, = 1, all the flows in this regime come from a reservoir with equal depth layers. 
A t  the start of this regime, the two layers have different depths and speeds a t  the 
narrowest section. As the flow rate increases, the transition point (S) moves towards 
the control at  the narrowest section (C), and there is a smaller difference in layer 
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FIGURE 10. Solution curves and schematic diagram of regime (iv) plunging flows: S, transition 
point; VC, virtual control; N, narrowest section; C, control. 

speed and depth at  this point. At the highest flow rate in this regime, the two-layer 
self-similar solution holds all the way to the narrowest section. The transition point 
and control both occur at this section, and the two layers have equal speeds and 
depths. 

(iv) Figure 10 shows a solution curve and schematic diagram for a flow in this 
regime. The two-layer flow passes through a virtual control and then passes through 
the narrowest section (N) but is not controlled there. The flow remains a two-layer 
flow and as the channel diverges, the flow returns toward the reservoir conditions 
along the same solution curve. At the point at which the corresponding 24-layer 
solution is just critical, the flow switches to that flow regime and continues down the 
channel as a fully supercritical 24-layer flow. Like highest volume flow in regime (iii), 
this solution is critical at the transition and so this point is also a control. 

5. Experiments 
The solutions discussed in $93 and 4 have been explored in a series of laboratory 

experiments. The experimental facility is shown in figure 11. A narrow channel is 
connected to a large reservoir (123 x 246 cm), the channel and reservoir have flat 
bottoms and are approximately 22 cm deep. The channel is 10.3 cm wide, narrowing 
to 2.2 cm in the contraction ; the total length of the convergenedivergent section is 
61 cm. In the narrowest part of the contraction, the streamwise variation of the 
channel width was quite small, changing by - 0.5 mm/cm in the 4 cm on either side 
of the narrowest section. 

The flow of two layers beneath a stagnant layer and two-layer plunging flows were 
realized by filling the reservoir with fresh water and pumping two layers of denser 
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FIGURE 11.  Sketch of the experimental facility. 

salt water into the reservoir through the contraction while withdrawing water from 
the reservoir to maintain constant depth in the channel and reservoir. Flow in the 
two moving layers was controlled by gear pumps whose flow rates were continuously 
variable. At the inlet, the layers were separated by splitter plates. Each inlet 
contained a region of high pressure loss consisting of open-cell foam, stainless-steel 
wool and plastic honeycomb. The large pressure drop resulted in a uniform flow in 
each layer. The upper moving layer was dyed, which allowed visualization of the 
density interfaces. 

Three set of experiments will be discussed. In the first, flows with only one control 
in the contraction were created by placing a weir in the channel far downstream from 
the contraction, at the connection to the reservoir. The weir controlled the total 
depth of the two moving layers, while the relative thickness of the layers was 
controlled by the contraction. In the second set of experiments, the downstream weir 
was removed. The total depth was then controlled at the narrowest section, and there 
was a virtual control in the convergent section of the channel that controlled the 
relative thickness of the two layers. The only flow of this type is Wood's self-similar 
solution. In both these sets of experiments, the channel and reservoir were filled to 
a depth of approximately 18 cm and the overlying stagnant layer was quite thick. 
Both these sets of experiments were carried out with two different sets of layer 
densities to illustrate the effects of changing relative layer densities discussed in $3. 
Finally, the plunging flows of $4 were studied. In this set of experiments, in order to 
match the upstream flow to the inlet diffuser and to perform experiments at  flow 
rates that the pumps could create, the reservoir and channel were filled to a depth 
of approximately 10.5 cm. 

The most important predictions of the theory are the conditions a t  the narrowest 
section, where the flow is typically controlled, so we measured the layer Froude 
numbers at the narrowest section. In all the experiments, the layer thicknesses were 
measured to f0 .5  mm and the density difference between adjacent layers was 
measured to f10-4g/cm3. These errors give an error in the measured Froude 
number, depending on the layer thickness, of 5 1 0 % .  Velocities in each layer were 
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assumed constant. This was tested by dropping potassium permanganate crystals 
into the flowing layers. The assumption is reasonable, although there were noticeable 
boundary layers both at the walls of the channel and between layers moving at  
markedly different speeds. A consequence of the sidewall boundary layers is that the 
effective width of the channel is different from the measured channel width and since 
the sidewall boundary layers grow with downstream position, the effective position 
of the narrowest section is displaced downstream of the geometric narrowest section. 
Another source of error is that although the channel width changed slowly in the 
vicinity of the narrowest section, the slopes of the interfaces in that area were 
sometimes not negligible and so one must expect some deviations from the 
hydrostatic and one-dimensional assumptions that the hydraulic theory relies upon. 

5.1. Flows with one control 
The total depth of the flows discussed here was controlled by a 7 cm high weir located 
a t  the entrance to the reservoir, far downstream of the contraction. The resulting 
flows are analogous to those discussed by Armi (1986), except that here the total 
depth of the two moving layers changes considerably as the flow passes through the 
contraction. The theory of $ 3  shows that for any flow rate at  which flow at the 
narrowest section is critical with respect to the higher mode, there are two controlled 
solutions: one accelerates the upper layer in the divergent section and the other 
accelerates the lower layer. Armi (1986) demonstrated both solutions by using both 
a conventional weir and an inverted weir to control the free-surface level. Here, we 
have only used a conventional weir, and so only created the solution in which the 
upper layer is accelerated in the divergent section. Since we are studying flows 
beneath a stagnant layer, this situation is the more physically relevant one. 

Conditions at  the narrowest section for flows with one control have been plotted 
in the Froude-number plane. Figure 12(a) shows these data for rol = 0.9936, r12 = 
0.9953, and photographs of two of the flows are shown in figures 12(b) and 12(c). The 
theoretical Q'/b' curves, critical flow curve, self-similar solution curve and solution 
curves for the flows in figures 12 ( b )  and 12 (c)  are also shown in the Froude-number 
plane. Each data point is labelled with the value of &'/b' at the narrowest section. 
The flows are controlled at the narrowest section or have a virtual control in the 
convergent part of the channel and are internally supercritical at the narrowest 
section. At the narrowest section, we would expect to see in the first case that the 
data points fall on the low-Froude-number critical line and in the second case that 
the data points lie on the self-similar flow solution curve beyond the first critical flow 
line. The deviations from these theoretical predictions, for reasons outlined above, 
are similar to those seen in the two-layer experiments reported by Armi (1986). 

Figure 12 (b )  is an example of a flow with a highest mode control a t  the narrowest 
section. The flow comes from upstream conditions (the left-hand side of the picture) 
where both Froude numbers are small. As the channel converges, both layers 
accelerate and at the narrowest section the flow is critical with respect to the slower 
internal wave mode. In  the divergent section of the channel, the flow is supercritical 
with respect to this mode while the upper layer thins and accelerates, and the lower 
layer thickens and decelerates. 

As the total flow rate is increased, eventually the volume flux is high enough so 
that the highest mode cannot be controlled at  the narrowest section. The self-similar 
solution flows into the contraction and the slower mode is controlled at  a virtual 
control upstream of the narrowest section, but the flow rate is not high enough for 
the faster mode to be controlled a t  the narrowest section. Lai & Wood (1975) 
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(Q/b')" = 0.51 
FIGURE 12. ( a )  Experimental values of the internal Froude numbers at the narrowest point in the 
contraction for flows with rol = 0.9936. rI2 = 0.9953 and &, = 1. Each point is labelled with the 
experimental value of Q / b ' .  The theoretical values of Q / b '  are shown, along with the critical flow 
lines and the self-similar solution curve. The dashed lines show the solution paths for the flows 
shown in ( b )  and (c), where flow is from left t o  right and the vertical ruler marks the narrowest 
section. ( b )  Flow through the contraction with Q'/b' = 0.36. (c) Flow through the contraction with 
Q / b '  = 0.51. 
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FIGURE 13. Experimental values of the internal Froude numbers at the narrowest point in the 
contraction for flows with r,,, = 0.9961, rl8 = 0.9919 and &, = 1. Each point is labelled with the 
experimental value of Q/b' .  The theoretical values of Q / b '  are shown, along with the critical flow 
lines and the self-similar solution curve. 

considered the hydraulic theory for such a flow in a 24-layer system and hypothesized 
that the flow would be symmetric about the narrowest section. Armi (1986) found an 
asymmetric flow in the analogous flow in a two-layer system. Figure 12 (c) shows this 
flow in the Stlayer system. The flow is similar to the two-layer flow found by Armi 
(1986). It is self-similar in the convergent section of the channel and both layers thin 
as the channel narrows. The flow passes through a virtual control and is supercritical 
with respect to the slower internal mode at the narrowest section. In the divergent 
section, instead of returning along the same solution branch, the flow is perturbed 
slightly from the self-similar branch, remains supercritical and accelerates the upper 
layer. The shear between the stagnant fluid and this accelerated layer, and between 
the two moving layers, resulted in an unstable flow in the divergent section. 

Figure 13 shows data for rol = 0.9961, rll = 0.9919 in a manner equivalent to that 
of figure 12(a) .  The data points show measured Froude number at the narrowest 
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FIQURE 14. (a) Experimental values of the internal Froude numbers at the narrowest point in the 
contraction for self-similar flows with rol = 0.9936, rI2 = 0.9953 and &, = 1. Each point is labelled 
with the total depth in cm at the inlet of the moving layers. The theoretical values of Q l b ’  are 
shown, along with the critical flow lines and the self-similar solution curve. (a) Self-similar flow 
through the contraction. Flow is from left to right and the vertical ruler marks the narrowest 
section. 

section for a range of flow rates so we again expect the data points to lie along the 
critical curve and, at higher flow rates, to be on the self-similar solution line. The 
form of the critical curve and the values of Q‘/b’ of the experimental flows are quite 
different from the situation shown in figure 12(a). However, the systematic 
deviations from the theoretical predictions are similar to those seen in figure 12(a)  
and by Armi (1986). 
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FIGURE 15. Experimental values of the internal Froude numbers at the narrowest point in the 
contraction for self-similar flows with r,, = 0.9961, r,, = 0.9919 and &, = 1. Each point is labelled 
with the total depth in cm at the inlet of the moving layers. The theoretical values of Q j b '  are 
shown, along with the critical flow lines and the self-similar solution curve. 

5.2.  Self-similar flows 
When the downstream weir is removed, there is only one point of constriction in the 
experimental apparatus, and the resulting controlled flow is Wood's self-similar 
solution. The conditions at the narrowest section for the self-similar flows with rol = 
0.9936, rI2 = 0.9953 are plotted in the Froude-number plane in figure 14(a), and a 
photograph of the flow is shown in figure 14 (b). The theoretical Q/b'  curves, critical 
flow curves and the self-similar solution curve are also shown in the Froude-number 
plane. The flows respond to changes in volume flux by changing the total depth of the 
moving layers and theoretically all self-similar flows for a given set of layer densities 
have the same value of &'/b' at the narrowest section. These flows are therefore 
labelled with the total volume flux. Theoretically, at the narrowest section, all these 
flows should be at the point in the Froude-number plane where the self-similar 
solution line crosses the outer critical curve and the flow should be critical with 
respect to the faster wave mode. While all the data points lie close to the self-similar 
solution line, the measured Froude numbers are consistently smaller than the 
theoretically predicted values, a result that is consistent with the idea that the 
effective narrowest section is displaced downstream of the geometric narrowest 
section by the sidewall boundary layers. 
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FIGURE 16. For caption see facing page. 
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Referring to figure 14(b), the ratio of the layer depths (yl/y2) is constant 
throughout the channel. The total depth of the moving layers is controlled a t  the 
narrowest section and there is a virtual control upstream of the narrowest section 
that controls the relative depth of the two layers. This solution is the only fully 
controlled solution so when the total volume flux is changed, the flow responds by 
changing its total depth but keeping the same self-similar form. Despite the slow 
streamwise variation in channel width, the slope of the layer interfaces close to the 
narrowest section is quite large. I n  the divergent part of the channel, the moving 
layers are accelerated and eventually the flow becomes unstable owing to the large 
shear at the top of the moving layers. 

Froude-number values at the narrowest section for self-similar flows with the 
density profile rol = 0.9961, rI2 = 0.9919 are shown in figure 15. As in the data shown 
in figure 14, we expect these data points to fall at the point in the Froude-number 
plane where the self-similar solution line crosses the outer critical curve. We again see 
that the data points are close to the self-similar solution line but that the observed 
Froude numbers a t  the narrowest section are significantly smaller than the 
theoretically predicted values. 

5.3. Plunging flows 
The sequence of plunging flows described in $4 was studied by establishing a self- 
similar flow and then increasing the total flow rate while keeping the flow ratio 
constant. Figure 16(a) shows conditions at the narrowest section for the plunging 
flows with rol = 0.9936, rI2  = 0.9953. As in the theoretical solutions, figures 7-10 
discussed in $4,  each experiment is labelled with the total volume flux normalized 
with the volume flux of the theoretical maximum self-similar flow. Figure 16(a) also 
shows the critical flow curves and the self-similar solution curves for the two-layer 
flow (the less steeply sloping straight line) and the self-similar solution curve for the 
2i-layer flow (the more steeply sloping straight line). When the flow rate is slightly 
greater than the maximum self-similar flow, the plunging flow has its plunge point 
upstream of the virtual control and the theory predicts that  the 2i-layer portion of 
the flow is self-similar. A flow of this type, corresponding to  regime (i) of $ 4  (figure 
7) ,  is shown in figure 16(b). 

As the flow rate is increased, the plunge point moves downstream into the 
contraction. A regime (iii) (figure 9) plunging flow, in which the plunge point has 
moved downstream of the virtual control, is shown in figure 16(c). In this flow, the 
plunge line is angled quite sharply across the channel, a ubiquitous feature of 
plunging flows a t  higher flow rates that  was not anticipated by the simple hydraulic 
theory. Downstream of the plunge point, the interface between the moving and 
stagnant layers is unstable. The instability mixes some of the stagnant fluid into the 
upper moving layer but the lower moving layer flows unmixed into the reservoir. 

A regime (iv) (figure 10) plunging flow is shown in figure 1 6 ( d ) .  At this higher flow 
rate, there are higher shears at the interface between moving and stagnant fluid. The 
onset of instability has moved upstream towards the plunge point so far that  the 
instability interacts with the plunge point. It was observed that the position of the 

FIGURE 16. (a) Experimental values of the internal Froude numbers at the narrowest point in the 
contraction for plunging flows with rO1 = 0.9936, rI2 = 0.9953 and &, = 1.  Each point is labelled 
with the total volume flux relative to the flux in the maximal self-similar flow. The critical flow lines 
and the self-similar solution curves are shown. (b-d) Flow is from left to right and the vertical ruler 
marks the narrowest section. ( b )  Regime (i) plunging flow with QREL = 1.03. ( e )  Regime (iii) 
plunging flow with QHEL = 1.26. ( d )  Regime (iv) plunging flow with QREL = 2.00. 
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plunge line was not steady. There is intense mixing in the divergent section of the 
channel. This, coupled with the fairly shallow layer of stagnant fluid, led to 
considerable circulation in the stagnant layer as fluid from the reservoir moves into 
the contraction to replace fluid entrained by the instabilities and carried into the 
reservoir as part of the newly formed mixed region. Again, the mixing involves the 
stagnant fluid and the upper moving layer, and the lower layer flows into the 
reservoir unmixed. 

In regimes (iii) and (iv), the plunging flows systematically depart from the 
solutions predicted by the hydraulic theory. The theory predicts that upstream of 
the plunge point, the flow is self-similar, the layer thicknesses remain constant and 
so yJy2 is constant. Figures 16 (c) and 16(d) show that upstream of the plunge point, 
the lower layer thins and since the free surface is approximat.ely level, there is a 
significant change in the ratio y1/y2. This is reflected in figure 16(a) -the Froude 
number of the upper layer is smaller than predicted by the t’heory owing to the 
systematic thickening of the upper layer. This results in the data points in figure 
16 (a)  being displaced to the left of the 24-layer self-similar solution curve, whereas 
the theory of $4, figures 9 and 10, predict that in regimes (iii) and (iv), as the total 
volume flux increases, the Froude number at the narrowest section will be displaced 
to the right of this curve, towards the two-layer self-similar solution curve. 

Preliminary experiments were conducted in which the configuration of the layers 
was inverted -two lighter layers were pumped into a denser tank to create regime 
(iii) and (iv) plunging flows. The ‘plunge ’ was on the bottom of the tank rather than 
a t  the free surface and the two moving layers flow over the heavier stagnant fluid in 
the divergent section of the channel. The upstream deviation from the theoretically 
predicted level interface was then considerably smaller than in the flows shown in 
figures 16 (c) and 16 ( d ) ,  but was not completely eliminated. 

6. Discussion 
The various solutions sets for two-layer flow through a contraction have a number 

of similar features. Solutions have been plotted in a Froude-number plane that is 
independent of the density of the stagnant layers. Changing the densities of the 
layers or removing one or both stagnant layers alters the Froude numbers at  which 
certain features appear but does not affect the underlying structure of the solution 
set already seen in Armi (1986). 

Since the total depth of the moving layers has been allowed to vary, there are 
always two critical lines in the Froude-number plane. There is always only one 
solution, the self-similar solution found by Wood (1968), that crosses both critical 
lines. This is the only solution that originates in a stagnant reservoir and flows 
through the contraction with both layers dynamically active. The coupling between 
the two layer is strong and the flow encounters two controls. At  lower Froude 
numbers, the relative thickness of each layer is controlled, and at higher Froude 
numbers, the total depth of the moving layers is controlled. The position in the 
Froude-number plane of the higher-Froude-number critical line is quite sensitive to 
changes in the step between the stagnant and moving layers relative to the density 
step between the moving layers. 

Four plunging flow regimes, defined by the position of the plunge point relative to 
the positions of the virtual control and the narrowest section, have been identified. 
For a fixed flow ratio, as the total flow rate is increased, the progression through the 
first two regimes is accompanied by a change in the upstream reservoir conditions. 
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A t  the lowest flow rate, the reservoir conditions are those required by the 2i-layer 
self-similar solution, and as the flow rate increases, the conditions changes to those 
required by the two-layer self-similar solution. 

A series of laboratory experiments demonstrated the flow of two layers beneath a 
stagnant layer and a range of two-layer plunging flows. In the divergent section, all 
of the fully supercritical 2i-layer flows were unstable owing to the shear between the 
upper moving layer and the overlying stagnant fluid. Instability was also seen in the 
flow with critical flow upstream of the narrowest section and internally supercritical 
flow in the divergent section. The stability of internal hydraulic flows, discussed for 
exchange flows by Lawrence (1990), must be considered when these solutions are 
applied. At  the higher flow rates studied here, non-hydrostatic effects and mixing 
become important, and the hydraulic theory only provides a qualitative description 
of the plunging flows. At low and moderate flow rates, the hydraulic theory gives a 
quantitative description of the observed 24-layer and plunging flows. 
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